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Problem Set 2

In this second problem set, you'll get to explore graph algorithms applied in a variety of contexts. 
By the time that you're done with this problem set, we hope that you'll have a much stronger intu-
ition for the graph algorithms we've covered so far and how to apply them to solve meaningful 
problems.

Please read over the “Problem Set Advice” handout before starting this problem set .  It con-
tains information about our grading policies, procedures, and expectations for the assignments.  In 
particular, please be sure to write your answers different problems on separate pages to make 
it easier for us to grade.

As always, please feel free to drop by office hours or send us emails if you have any questions. 
We'd be happy to help out.

This problem set has 34 possible points.  It is weighted at 12% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so the difficulty of the problems increases 
over the course of this problem set.

Good luck, and have fun!

Due Friday, July 12 at 2:15 PM
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Problem One: Dijkstra's Algorithm and Negative Weights (3 Points)
Suppose that you have a graph G = (V, E) where each edge (u, v) has a length l(u, v), which can be 
positive, zero, or negative.  You are interested in finding the lengths of the shortest paths from 
some node s  ∈ V to each node v  ∈ V.  As usual, if there is no path from s to v, we'll say that the 
cost of the shortest path is ∞.

We have to be careful when edges have negative costs.  For 
example, we can't allow a graph like the one pictured to the 
right because there is no shortest path from A to B; we can go 
around the cycle ⟨A, B,  D,  C  arbitrarily many times before⟩  
following edge (D,  E),  giving  paths of  arbitrarily negative 
cost.  Consequently, we will assume that the graph  G does 
not  contain  any cycles  with a negative  length,  since  there 
might not be shortest paths in that case.

i. Find an example of a graph G with arbitrary edge lengths (but no negative cycles) where 
running Dijkstra's algorithm starting from  some  node  s will not find the  lengths of the 
shortest path from s to each node in the graph.  Describe what the lengths of the shortest 
paths actually are and what path lengths Dijkstra's algorithm would find.

Now, consider the following modification to Dijkstra's algorithm to handle negative edge lengths: 
find the edge (u, v) where l(u, v) is minimal and subtract l(u, v) from the length of each edge in the 
graph.  Then, run Dijkstra's algorithm on the resulting graph.

ii. Will this modification to Dijkstra's algorithm always find shortest paths in graphs with no 
negative cycles?  If so, prove that the algorithm is always correct.  If not, find an example 
of a graph G where running Dijkstra's algorithm starting from some node s will not find 
the  lengths of the  shortest  path from  s to each node in the graph.  Describe what  the 
lengths of the shortest paths actually are and what path lengths this algorithm would find.

Problem Two: Archaeological Consistency (10 Points)
Suppose that you have found a collection of historical  records indicating the relative order in 
which various people lived and died.  Each record tells you one of the following:

• Person A and person B were alive at the same time.

• Person A died before person B was born.

Your task is to determine whether the historical records are consistent; that is, whether it was ac-
tually possible for all of these people to have lived and died in such a way that all of your records 
are accurate.

Suppose that your records involve n total people and you have m records relating their lifespans. 
Design an O(m + n)-time algorithm that determines whether or not the records are consistent with 
one another.  Then:

• Describe your algorithm.

• Prove that your algorithm correctly determines whether the records are consistent.

• Prove that your algorithm runs in time O(m + n).

For simplicity, you can assume the people are numbered 0, 1, 2, …, n – 1.
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Problem Three: Constrained Clustering (8 Points)
You are given a collection of points P and want to split P into k nonempty, disjoint sets S , ₁ S , …₂  
S  for some number ₖ k of your choosing.  Without any restrictions on how you're allowed to split 
the points apart, this problem is easy – any way of splitting the points apart into nonempty disjoint 
sets is permissible.

In the constrained clustering problem, you are given a set of constraints that govern whether cer-
tain pairs of points must or must not be in the same cluster as one another.  Specifically, each con-
straint will be one of the following two types:

• A must-link constraint of the form ML(p , ₁ p ), which states that points ₂ p  and ₁ p  must be₂  
placed into the same cluster, and

• A cannot-link constraint of the form CL(p , ₁ p ), which states that points ₂ p  and ₁ p  cannot₂  
be placed into the same cluster.

For example, given the points p  , ₁ p , … , ₂ p₉ and these constraints:

ML(p , ₄ p )₇

ML(p , ₁ p )₃

CL(p , ₃ p ) ₈

CL(p , ₈ p )₂

ML(p , ₅ p )₉

ML(p , ₉ p )₄

CL(p , ₁ p )₇

CL(p , ₈ p )₁

CL(p , ₈ p )₉

One possible clustering would be to split the nodes as {p , ₁ p }, {₃ p }, {₂ p , ₄ p , ₅ p , ₇ p }, {₉ p }₈ .

In some cases, it is not possible  to split the points into different  sets while respecting the con-
straints.  For example, given the constraints ML(x, y) and CL(x, y), there is no way to legally par-
tition the data, since x and y simultaneously must be and must not be in the same set.  Similarly, 
given ML(x, y), ML(x, z), and CL(x, z), no partition of the points is legal.

Design an algorithm that, given a collection of n points, m ML constraints, and c CL constraints, 
determines whether or not it is possible to cluster the points while satisfying all the constraints. 
Your algorithm doesn't need to find such a clustering; it just needs to report whether or not one 
exists.  Your algorithm should run in time O(m + n + c).

When answering this question, you should

• Describe your algorithm.

• Prove that your algorithm correctly determines whether a clustering exists.

• Prove that your algorithm runs in time O(m + n + c).

For simplicity, you can assume that the points are numbered 0, 1, 2, …, n – 1 and that the ML and 
CL constraints are given to you in separate arrays.
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Problem Four: Tournament Champions (12 Points)
Suppose that there is a tournament involving n players, where certain pairs of players play a single 
game against one another.  We can then visualize the tournament as a directed graph, where each 
node is a player and there is an edge from u to v iff u played v and won her game against him. 

For example,  in the tournament to the right,  player  B 
directly beat  A,  D, and  H,  but lost to  C; player  G di-
rectly beat D and F, but lost to H; player C beat players 
B, D, and F, but lost to A; and player J won no games 
and lost to E, H, and I.

We'll say that a player  p  transitively beat a player  ₁ p₂ 
iff there is a path from p  to ₁ p  in the graph of the tour₂ -
nament.  Intuitively, if  p  and ₁ p  are different players,₂  
either p  directly beat ₁ p  in a game, or ₂ p  won against a₁  
player who in turn transitively beat  p .  Note that it's₂  
possible that two players transitively beat one another. 
In the above graph, player G transitively beat player H 
(since G beat D, who beat E, who beat H), but H also 
transitively beat G (since H directly beat G.)

Finally, define a tournament champion to be a player c who transitively beat every player in the 
tournament.  A tournament can have multiple champions; for example, in the above tournament, 
players A, B, and C are champions, and no other players are.  Some tournaments might not have 
any champions at all.

Let n be the number of players and m the total number of games played.  Design an O(m + n)-time 
algorithm for finding all of the tournament champions in a tournament.  If there aren't any win-
ners, your algorithm should not output anyone.  Then:

• Describe your algorithm.

• Prove that your algorithm is correct.

• Prove that your algorithm runs in time O(m + n).

Problem Five: Course Feedback (1 Point)
We want this course to be as good as it can be, and we'd appreciate your feedback on how we're  
doing.  For a free point, please answer the following questions.  We'll give you full credit no mat-
ter what you write, as long as you write something.

i. How hard did you find this problem set?  How long did it take you to finish?  Does that 
seem unreasonably difficult or time-consuming for a five-unit course?

ii. Did you attend office hours?  If so, did you find them useful?

iii. Did you read through the textbook?  If so, did you find it useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you 
think we're doing well?
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